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Alternative Derivation of Main Results

Here we do a re-derivation of the PYL learning rule. We focus on the case with no regressors

for expositional purposes and then do an alternative derivation of the main formulation

using matrices.

No Regressor Case

For the case with no regressors, Equation (1) with δ = 0 implies that the DGP is given by:

xt = α+ βxet + εt

where the REE in Equation (2) is given by

xt = ā+ εt, ā = (1 − β)−1α

This implies that the PLM is:

xei,t = ai,t−1
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That is, agents are regressing on a constant with their PLM, or alternatively just taking

the sample mean of past realizations xt. To show this more clearly note that:

a1,t = a1,t−1 +
1

1
[xt − a1,t−1] = xt

a2,t = a2,t−1 +
1

1
[xt − a1,t−1] =

1

2
(xt + xt−1)

...

ai,t = ai,t−1 +
1

i
[xt − ai,t−1] =

1

i
(xt + xt−1 + ...+ xt−i)

As we can see, the recursive formulation is just a way of representing the sample mean,

where agents are taking a sample mean relative to their own history. Here to tie in with the

main derivation closer, we will use the following for the population weights where g = q:

ni = q(1 − q)i−1

Then, the object of interest is xet =
∑∞

i=1 nix
e
i,t where plugging in for the individual PLMs

implies:

xei,t =
∞∑
i=1

ni
1

i
(xt−1 + xt−2 + ...+ xt−i)

There are two equivalent ways of solving this equation. The first done in the paper is to

rearrange the infinite sums. The second way is to represent all the objects as matrices.

Both are equivalent but the matrices also provide visual intuition while also showing a

connection between our results and models where agents use their full information sets,

which is why we will re-derive the main results in the next subsection. Here, we will use

the first approach with infinite sums.

Here we know the geometric-harmonic series itself is convergent. We are allowed to

rearrange the infinite series as long as the series is absolutely convergent. The most common

way to show this is to show that the absolute value of the terms is convergent as well.

Assuming sufficient regularity of the xt, it is clear that the geometric-harmonic terms of

the xei,t are absolutely convergent as the terms are all positive.1 Then, writing out the

terms:

xei,t = n1xt−1 +
1

2
n2(xt−1 + xt−2) + ...+

1

i
ni(xt−1 + xt−2 + ...+ xt−i) + ...

1Again, as in the paper, the key assumption that is needed is that the discounted sum of future xt i.e.,

xt is convergent, which is satisfied if xt is stationary. Another sufficient condition is that xt and has a

growth rate that is bounded by some constant, c i.e., they are not growing faster than the denominator.
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Note that every cohort places some weight on xt−1. Then the pattern is every cohort

besides cohorts of age 1 places weight on xt−2 and so on. Rearranging, we get:

xei,t =

( ∞∑
i=1

ni

)
xt−1 +

( ∞∑
i=2

ni
2

)
xt−2 + ...+

 ∞∑
j=i

nj
j

xt−j + ...

That is, the individual infinite sum terms, which we can define as Si are infinite sums to

infinity but starting from j = i i.e. removing all the first i terms. Then:

Si =
∞∑
j=i

q(1 − q)j−1

j

= q(1 − q)i−1 ∗

( ∞∑
k=0

(1 − q)k

i+ k

)
= q(1 − q)i−1Φ(1 − q, 1, i)

where the second equality above follows from splitting the series, factoring out q(1− q)i−1,
and setting the new index from k and where Φ(1 − q, 1, i) again is known as a Lerch

transcendent. Using this result, we can then plug in and get our analogue to Equation

(10):

xei,t =
∞∑
i=1

q(1 − q)i−1Φ(1 − q, 1, i)xt−i

Matrices

Here, we solve for aggregate expectations, xet but using the matrices approach. We will

again assume the population weights case where g = q for expositional purposes. Then,

we can define aggregate expectations, xet ≡
∑∞

i=1 nix
e
i,t. In order to solve for aggregate

expectations, we need to aggregate across each individual’s expectations. To solve for

aggregate expectations, we adopt the following strategy. We define the infinite-dimensional

matrices W,X, and N :

W =


1 0 ... ...
1
2

1
2 0 ...

1
3

1
3

1
3 ...

1
4

1
4

1
4 ...

... ... ... ...

 X =


xt−1 − b′wt−2

xt−2 − b′wt−3

xt−3 − b′wt−4

xt−4 − b′wt−5

...

 N =


n1

n2

n3

n4

...


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where W is a weighting matrix that summarizes how much weight each cohort places

on past observations, X is the vector of past residualized means, and N is the vector of

population weights by age. Note that X is indexed with xt−1 − b′wt−2 because xt is a

function of wt−1 and not wt. Then we can define xet :

xet = N ′WX

=
∞∑
i=1

ni ∗
1

i
∗ xei,t

=
∞∑
i=1

q(1 − q)i−1 ∗ 1

i
∗ (ai,t−1 + b′wt−1).

Let Xi denote the ith observation of vector X. Note that the rows of W correspond to

the cohort’s weights on past observation Xi, that is, the rows of W have weight 1 on the

first element and 0 elsewhere because the cohort of agents of age 1 places all their weight

on the most recent observation X1.

We use the insight that the DGL learning rule under stochastic gradient learning is

essentially a weighted average of past observations. Then aggregate expectations are equiv-

alent to summing up the columns of W and then using these as weights for the individual

elements of X. That is, solving for the coefficient term ai,t is equivalent to finding the

coefficients on the past xt−1 − b′wt−2 terms.

In particular, we can define the solution for aggregate expectations xet for the constant

at−1 in the aggregate perceived law of motion (PLM) as:

at−1 = S1(xt−1 − b′wt−2) + S2(xt−2 − b′wt−3) + ...

=
∞∑
i=1

Si(xt−i − b′wt−i−1)

where the individual elements i of the row vector N ′W , that is (N ′W )i =
∑

j=i ni ∗
1
i , are

equivalent to Si i.e.:

Si = (N ′W )i

=
∞∑
j=i

q(1 − q)j−1 ∗ 1

j

Note that each element of N ′W is itself an infinite series. Si is essentially the partial
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sum of a geometric-harmonic series. Summing up each infinite series in N ′W , leads to the

following:

[∑∞
i=1 q(1 − q)i−1 ∗ 1

i

∑∞
i=2 q(1 − q)i−1 ∗ 1

i

∑∞
i=3 q(1 − q)i−1 ∗ 1

i ...
]

xt−1 − b′wt−2

xt−2 − b′wt−3

xt−3 − b′wt−4

xt−4 − b′wt−5

...


To solve for aggregate expectations requires solving for the composition of two infinite

series, ni and 1
i , specifically,

∑∞
i=1 q(1 − q)i−1 ∗ 1

i . Under PYL, aggregate expectations for

the constant at−1 and xet follow:

at−1 =
∞∑
i=1

Si(xt−i − b′wt−i−1)

xet = at−1 + b′wt−1

where,

Si =
∞∑
j=i

q(1 − q)j−1 ∗ 1

j

Plugging in for Si implies the following result which is the same as our main result.

Again, while the disadvantage of this approach is that the derivation is more convoluted,

the matrices show that our PYL model is related to the CGL model but with a restricted

history matrix.

Alternative Learning Rules for Different q

Here we provide different implied effective constant gain parameters for different q values

and a wider variety of parameters. Note that g = q for this exercise which implies that

birth rates equal death rates. We do this for q = 0.001, 0.002, 0.003, 0.004, 0.005. More

specifically, we choose 0.0031 as this is the case we use in the benchmark PYL model.
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Additional Data

Table 1: Implied Effective CGL for Additional Data by Birth Rates

h q = 0.001 q = 0.002 q = 0.003 q = 0.004 q = 0.005

h = 0 (PYL) 0.007 0.013 0.018 0.022 0.027

2 0.005 0.010 0.013 0.016 0.019

4 0.005 0.008 0.011 0.014 0.016

6 0.004 0.008 0.010 0.012 0.015

8 0.004 0.007 0.009 0.011 0.013

10 0.004 0.007 0.009 0.011 0.012

12 0.004 0.006 0.008 0.010 0.011

14 0.004 0.006 0.008 0.009 0.011

General Decreasing-gain Learning (DGL)

Table 2: Implied Effective CGL for General DGL by Birth Rates

α q = 0.001 q = 0.002 q = 0.003 q = 0.004 q = 0.005

α = 0.25 0.217 0.258 0.289 0.306 0.323

0.5 0.055 0.077 0.092 0.107 0.119

0.75 0.017 0.028 0.038 0.044 0.051

1 (PYL) 0.007 0.013 0.018 0.022 0.027

1.25 0.004 0.007 0.011 0.014 0.017

1.5 0.003 0.005 0.008 0.009 0.012

1.75 0.002 0.004 0.006 0.008 0.009

2 0.002 0.003 0.005 0.007 0.008

2.25 0.001 0.003 0.005 0.006 0.007

2.5 0.001 0.003 0.004 0.005 0.007

2.75 0.001 0.003 0.004 0.005 0.006

3 0.001 0.002 0.004 0.005 0.006
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Biased Weights (MN)

For the model with biased weights, we also provide the implied effective constant gain

under the second and third terms SMN
2 and SMN

3 .

Table 3: Implied Effective CGL for Biased Weights by Birth Rates

Gain Term q = 0.001 q = 0.002 q = 0.003 q = 0.004 q = 0.005

1st Gain SMN
1 0.012 0.021 0.031 0.037 0.044

2nd Gain SMN
2 0.010 0.017 0.024 0.029 0.034

3rd Gain SMN
3 0.009 0.015 0.021 0.025 0.029

where the formulas for the second and third gains in the MN sequence are given by:

γMN
CGL = SMN

2 =

∞∑
i=2

q(1 − q)i−1 ∗ i− 1
1
2 i(i+ 1)

=
2q(2q − q ln q − ln q − 2)

(1 − q)2

γMN
CGL = SMN

3 =

∞∑
i=3

q(1 − q)i−1 ∗ i− 2
1
2 i(i+ 1)

=
q(q2 + 4q − 4q ln q − 2 ln q − 5)

(1 − q)2

We will not prove the results here but they can be verified via programs such as Mathe-

matica. In general, the implied effective constant gains for the second and third gain terms

are lower than for the first gain as we would expect.
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